Phylodynamic Inference and Model Assessment with Approximate Bayesian Computation: Influenza as a Case Study
نویسندگان
چکیده
A key priority in infectious disease research is to understand the ecological and evolutionary drivers of viral diseases from data on disease incidence as well as viral genetic and antigenic variation. We propose using a simulation-based, Bayesian method known as Approximate Bayesian Computation (ABC) to fit and assess phylodynamic models that simulate pathogen evolution and ecology against summaries of these data. We illustrate the versatility of the method by analyzing two spatial models describing the phylodynamics of interpandemic human influenza virus subtype A(H3N2). The first model captures antigenic drift phenomenologically with continuously waning immunity, and the second epochal evolution model describes the replacement of major, relatively long-lived antigenic clusters. Combining features of long-term surveillance data from The Netherlands with features of influenza A (H3N2) hemagglutinin gene sequences sampled in northern Europe, key phylodynamic parameters can be estimated with ABC. Goodness-of-fit analyses reveal that the irregularity in interannual incidence and H3N2's ladder-like hemagglutinin phylogeny are quantitatively only reproduced under the epochal evolution model within a spatial context. However, the concomitant incidence dynamics result in a very large reproductive number and are not consistent with empirical estimates of H3N2's population level attack rate. These results demonstrate that the interactions between the evolutionary and ecological processes impose multiple quantitative constraints on the phylodynamic trajectories of influenza A(H3N2), so that sequence and surveillance data can be used synergistically. ABC, one of several data synthesis approaches, can easily interface a broad class of phylodynamic models with various types of data but requires careful calibration of the summaries and tolerance parameters.
منابع مشابه
A Disease Outbreak Prediction Model Using Bayesian Inference: A Case of Influenza
Introduction: One major problem in analyzing epidemic data is the lack of data and high dependency among the available data, which is due to the fact that the epidemic process is not directly observable. Methods: One method for epidemic data analysis to estimate the desired epidemic parameters, such as disease transmission rate and recovery rate, is data ...
متن کاملPhylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology
The shapes of phylogenetic trees relating virus populations are determined by the adaptation of viruses within each host, and by the transmission of viruses among hosts. Phylodynamic inference attempts to reverse this flow of information, estimating parameters of these processes from the shape of a virus phylogeny reconstructed from a sample of genetic sequences from the epidemic. A key challen...
متن کاملA Prioritization Model for HSE Risk Assessment Using Combined Failure Mode, Effect Analysis, and Fuzzy Inference System: A Case Study in Iranian Construction Industry
The unavailability of sufficient data and uncertainty in modeling, some techniques, and decision-making processes play a significant role in many engineering and management problems. Attain to sure solutions for a problem under accurate consideration is essential. In this paper, an application of fuzzy inference system for modeling the indeterminacy involved in the problem of HSE risk assessm...
متن کاملFunctional Brain Response to Emotional Muical Stimuli in Depression, Using INLA Approach for Approximate Bayesian Inference
Introduction: One of the vital skills which has an impact on emotional health and well-being is the regulation of emotions. In recent years, the neural basis of this process has been considered widely. One of the powerful tools for eliciting and regulating emotion is music. The Anterior Cingulate Cortex (ACC) is part of the emotional neural circuitry involved in Major Depressive Disorder (MDD)....
متن کاملRisk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کامل